

Heavy Flavor Production at the Tevatron

Kenichi Hatakeyama

Rockefeller University

for the CDF and DØ Collaborations

International Conference on High Energy Physics
July 26 - August 2, 2006
Moscow, Russia

Heavy flavor production

- ☐ Studies of events containing *b*-quarks produced a variety of important physics results at the Tevatron:
 - Top quark discovery, measurements of top quark properties.
 - Various B physics: Spectroscopy, Lifetime measurement, Bs mixing, etc
- However, understanding *b* production has been a big challenge in QCD.
 - >20 years after the discovery of the *b*-quark (1977), the measured *b* cross section was still >2 x larger than predictions.
 - Only recently, data and theory started to agree:
 Fixed order + NLL (FONLL), improved fragmentation function, ...
- Further understanding *b* production (especially *b*-quark jet) will enhance the potential for discoveries of new physics.
 - QCD heavy flavor production is important background in many new physics searches

New CDF B⁺ measurement included

Outline

- ☐ Introduction
- \square Inclusive *b*-jet production
 - cross section measurement
 - b-jet shape
- \square Z + b-jet production
- \square $W + b\overline{b}$ production
- Conclusions

Photon + b-jet measurement was presented in the Ch. Schwanenberger's talk on Thursday.

Tevatron Run 2 detectors

Excellent tracking resolution

Excellent muon identification and acceptance

Both detectors are the general-purpose detectors:

- ☐ Silicon microvertex detector
- ☐ Solenoid
- Muon chambers
- ☐ Calorimeter → Measuring jets

identifying

b-quarks

Inclusive b-jet production

b-quark production at hadron colliders

Leading order processes

Next-to-leading order processes

Experiments measure either *B* hadrons or *b*-jets.

Measurement of *b*-jets:

- \Box b-jets contain most of b remnants: less sensitive to the fragmentation function
- \square Wide Pt region: in high Pt physics, experiments find b-quarks through b-jets

b-jet identification

- The most commonly used "tagging" technique identifies *b*-jets with a displaced secondary vertex (long *B* hadron lifetime, $c\tau \sim 450 \mu m$)
 - **onsider** tracks in η - φ cone of 0.4 around jet axis
 - reconstruct secondary vertex from displaced tracks
 - If the vertex has large transverse displacement (Lxy), the jet is "b-tagged".
- \square Evaluate *b*-tagging performance:
 - Tag efficiency for *b*-jets
 - *b*-fraction: fraction of *b* 's in the tagged sample

b-jet identification: CDF

\Box b-tag efficiency:

- From MC to cover wide jet Pt
- Correct for the data-MC difference due to simulation imperfections: $\varepsilon^{\text{data}}/\varepsilon^{\text{MC}} = 0.91 \pm 0.06$.

\Box b-fraction:

- Make template fits to the secondary vertex mass distributions: *b*-jet has larger secondary vertex mass (large B-hadron mass)
- The fit is made in each jet Pt bin.

Jet energy corrections: CDF

Jet energies measured by the calorimeters have to be corrected before compared to theoretical predictions.

- □ Energy from pile-up events <</p>
- Average energy loss of jets due to the non-compensating nature of the calorimeter
- Smearing (resolution) effect

Hadron-level cross section

Correction from data

Correction from simulated *b*-jets. Individual particle response in simulation tuned to test-beam and in-situ data.

To make fair comparisons with parton-level pQCD predictions, need to account for:

- Underlying event
- Hadronization

Effects evaluated from simulated *b*-jet events. Underlying event in MC is tuned to data.

Inclusive b-jet cross section: CDF

- NLO prediction uncertainties are mainly from μ scales
- Agreement with NLO pQCD predictions based on CTEQ6 PDF within uncertainties

- ☐ Measurement covers up to 400 GeV/c in Pt, more than 6 orders of magnitude in cross section
- ☐ Main experimental uncertainties:
 - jet energy scale
 - *b*-fraction in the tagged sample

b-jet shape: CDF

$$\Psi(r) = \int_0^r \frac{p_T(r')}{p_T^{jet}} dr' = \frac{1}{N_{jets}} \sum_{jets} \frac{p_T(0, r)}{p_T(0, R)}$$

- b-jet shape measured for jet Pt from 52 to 300 GeV/c
- b-jets measured to be wider than inclusive jets
- Agreement with PYTHIA is poor
 - Jet shape strongly depends on # of b's in the jet.
 - The agreement is better when the ratio of jets with 1- to 2b's in PYTHIA is decreased by 20%

CDF II preliminary

 $1-\Psi_{h}(r=0.2)$

b-jets Data

1b-jets Pythia Tune A

0.6

0.5

0.4

0.3

0.2

Z + b-jet production

Probe the less-well-known heavy flavor content of the proton.

The knowledge of the *b*-density in the proton influences:

- \square Single top-quark production $qb \rightarrow q't$ and $gb \rightarrow Wt$
- \square Supersymmetric higgs boson production, $gb \rightarrow hb, bb \rightarrow h$

Major background for SM higgs searches $(ZH, H \rightarrow b\overline{b})$

Z + b-jet production: DØ

- \square Z events selected with di-leptons (ee and $\mu\mu$).
- \Box b-jet identification similar to the CDF inclusive b-jet measurement.

 \Box $\sigma(Z+b-jets) / \sigma(Z+jets)$ is measured to be:

$$2.1 \pm 0.4 \text{(stat)} + 0.2 \text{(syst)} \%$$
 $(p_T^{jet} > 20 \text{ GeV/c and } | \eta^{jet} | < 2.5)$

In agreement with the next-to-leading order (NLO) prediction 1.8 ± 0.4 % based on CTEQ6 PDF.

Z + *b*-jet production: CDF

No assumption made on $\sigma(Z+c-jet)/\sigma(Z+b-jet)$: the fraction determined from the template fit of the secondary vertex mass distributions.

$E_{T}^{\text{jet}} > 20 \text{ GeV}, \eta^{\text{jet}} < 1.5$ $R_{\text{jet}} = 0.7$	CDF measurement	PYTHIA	NLO (MCFM, CTEQ6)
$\sigma(Z+b-jet)$	$0.93 \pm 0.29 \pm 0.21 \text{ (pb)}$		$0.45 \pm 0.07 \text{ (pb)}$
$\sigma(Z+b-jet)/\sigma(Z)$	$0.37 \pm 0.11 \pm 0.08 \%$	0.35 %	$0.19 \pm 0.03 \%$
$\sigma(Z+b-jet)/\sigma(Z+jet)$	$2.36 \pm 0.74 \pm 0.53 \%$	2.18 %	$1.81 \pm 0.27 \%$

Consistent with NLO within errors, however statistically limited.

$Wb\overline{b}$ production: CDF

Large background for many analyses

- ☐ SM Higgs (WH) production
- ☐ Single top quark production
- \Box $t\bar{t}$ production

$$\sigma(W^{\pm}b\overline{b}) \times BR(W^{\pm} \to l^{\pm}\nu) = 0.90 \pm 0.20(stat.) \pm 0.26(syst.) \ pb$$

(E_T > 20 GeV, | η |< 2)

Consistent with Alpgen (0.74±0.18pb) within errors. No NLO comparison yet.

Conclusions

- ☐ Big effort has been made on studies of heavy quark production at the Tevatron in Run 2
- \square Measurements of inclusive *b*-jet cross section by CDF and Z+*b*-jet cross section by CDF and DØ
 - Results are in agreement with NLO pQCD predictions
 - \mathbb{Z} +b-jet measurements limited by statistics. >2 x data are already in our hands.
- \square Measurement of *b*-jet shape by CDF
 - b-jets measured to be wider than inclusive jets
 - Agreement with PYTHIA is poor. Sensitive to fraction of jets containing 2 b's.
- \square Wb \overline{b} cross section measurement by CDF
 - Consistent with Alpgen prediction

Backup

J/Ψ production: CDF

- Sizable number of J/ Ψ 's up to Pt = 60 GeV/c.
- \square Will allow us to extend the J/Ψ and *b* cross section measurement to higher Pt than before.
- ☐ Comparisons with *b*-jet measurements?

Υ(1S) production: DØ

- \square Bottomonium bound state production model depends on assumptions on the non-perturbative transition from the bb pair to a bottomonium.
- Color singlet model (CSM), color evaporation model, color octet model (COM)

 Υ (1S) reconstructed from di-muons.

Rapidity range up to |y| < 1.8, extended from the Run 1 CDF measurement.

Comparison to COM (hep-ph/0411026,0404158)

Further constraints on parameters of bottomonium production models

b-jet shape: CDF

